Detailed Course Outline
Day 1
Module 1: Amazon SageMaker Studio Setup
- JupyterLab Extensions in SageMaker Studio
 - Demonstration: SageMaker user interface demo
 
Module 2: Data Processing
- Using SageMaker Data Wrangler for data processing
 - Hands-On Lab: Analyze and prepare data using Amazon SageMaker Data Wrangler
 - Using Amazon EMR
 - Hands-On Lab: Analyze and prepare data at scale using Amazon EMR
 - Using AWS Glue interactive sessions
 - Using SageMaker Processing with custom scripts
 - Hands-On Lab: Data processing using Amazon SageMaker Processing and SageMaker Python SDK
 - SageMaker Feature Store
 - Hands-On Lab: Feature engineering using SageMaker Feature Store
 
Module 3: Model Development
- SageMaker training jobs
 - Built-in algorithms
 - Bring your own script
 - Bring your own container
 - SageMaker Experiments
 - Hands-On Lab: Using SageMaker Experiments to Track Iterations of Training and Tuning Models
 
Day 2
Module 3: Model Development (continued)
- SageMaker Debugger
 - Hands-On Lab: Analyzing, Detecting, and Setting Alerts Using SageMaker Debugger
 - Automatic model tuning
 - SageMaker Autopilot: Automated ML
 - Demonstration: SageMaker Autopilot
 - Bias detection
 - Hands-On Lab: Using SageMaker Clarify for Bias and Explainability
 - SageMaker Jumpstart
 
Module 4: Deployment and Inference
- SageMaker Model Registry
 - SageMaker Pipelines
 - Hands-On Lab: Using SageMaker Pipelines and SageMaker Model Registry with SageMaker Studio
 - SageMaker model inference options
 - Scaling
 - Testing strategies, performance, and optimization
 - Hands-On Lab: Inferencing with SageMaker Studio
 
Module 5: Monitoring
- Amazon SageMaker Model Monitor
 - Discussion: Case study
 - Demonstration: Model Monitoring
 
Day 3
Module 6: Managing SageMaker Studio Resources and Updates
- Accrued cost and shutting down
 - Updates
 
Capstone
- Environment setup
 - Challenge 1: Analyze and prepare the dataset with SageMaker Data Wrangler
 - Challenge 2: Create feature groups in SageMaker Feature Store
 - Challenge 3: Perform and manage model training and tuning using SageMaker Experiments
 - (Optional) Challenge 4: Use SageMaker Debugger for training performance and model optimization
 - Challenge 5: Evaluate the model for bias using SageMaker Clarify
 - Challenge 6: Perform batch predictions using model endpoint
 - (Optional) Challenge 7: Automate full model development process using SageMaker Pipeline